SPDX-License-Identifier: Apache-2.0     
Copyright (c) 2020-2021 Intel Corporation

O-RAN Front Haul Sample Application in OpenNESS

Recent and incoming telecommunication standards for Radio Access Network (RAN) tend to introduce open network interfaces that are expected to become adopted by broad numbers of RAN vendors and operators. Networks based on common standards are thought to be more inclined to innovations. Thus, standardization committees aim to support the global industry vision and encourage emerging multi-vendor, interoperable, and innovative virtualized RAN (vRAN) to enable vRAN shift to the Cloud and exploit the opportunities the Cloud has to offer—scalability, efficiency, cost reduction, and more. Flexible Radio Access Network (FlexRAN), which is part of proof-of-concept work at Intel, demonstrates vRAN deployment on Intel® architecture. It follows the most recent RAN standards and deploys innovative software and hardware solutions proposed by Intel to refine the baseband L1 functionality. Recently, 5GNR FlexRAN has started supporting the open Front Haul* interface standard introduced by the O-RAN Alliance* here.

The focus of this white paper is to show how OpenNESS facilitates the deployment of 5GNR FlexRAN Front Haul functional units based on O-RAN specifications at the Network Edge. It also demonstrates how OpenNESS may assist in exploiting the capabilities of the X700 family NICs to address the challenges related to 5G RAN evolution including fast-growing user traffic and the move towards the Edge Cloud.

This document describes the Intel® Ethernet Controller X710 new capability known as Dynamic Device Personalization (DDP). It provides the steps for utilizing this feature on the OpenNESS platforms. DDP technology has been previously implemented and tested within LTE FlexRAN L1 and proven to reduce network latency and the number of CPU cycles used for packet processing, leading to the increase of the overall network throughput. Choosing DDP is a promising option for removing the network bottleneck related to packet filtering and realizing stringent latency and throughput requirements imposed onto 5G networks. Tests performed with FlexRAN using LTE Front Haul interface based on Ferry Bridge (FB), the codename of a technology from Intel, and incorporating the DDP capability of Intel® Ethernet Controller X710 showed up to 34% reduction in CPU cycles used for packet processing. Whereas tests performed on Multi-access Edge Computing (MEC) solution demonstrated a nearly 60% reduction in network latency. These findings are already described in an incoming white paper “Dynamic Device Personalization: Intel Ethernet Controller 700 Series - RadioFH Profile Application Note”. Shifting towards DDP for increased performance is also a promising option for the Network Edge. Such deployment has already been tested on Kubernetes* architecture and described here.

More details on O-RAN Front Haul Sample Application in OpenNESS is available under Intel® Distribution of OpenNESS.